İlişkilendirme modelleri (attribution models), dijital pazarlama dünyasında pazarlama faaliyetlerinin etkisini anlamak, bütçeyi optimize etmek, strateji geliştirmek, müşteri içgörüleri elde etmek, performansı ölçmek, farklı kanalların etkisini anlamak ve veri destekli kararlar almak için oldukça önemli araçlardır.
Doğru ilişkilendirme modelini kullanarak pazarlama faaliyetlerinizi daha verimli ve etkili hale getirebilir, pazarlama stratejinizin başarısını arttırabilirsiniz.
Doğru attribution modelini kullanabilmek için ise Universal Analytics ve Google Analytics 4’te kullanılan ilişkilendirme modellerini bilmeniz gerekmektedir.
İlişkilendirme Modeli (Attribution Modelling) Nedir?
Attribution modeling, dijital pazarlama ve reklamcılık alanında kullanılan bir kavramdır ve çeşitli pazarlama kanallarının bir müşterinin dönüşüm sürecindeki katkısını değerlendirmek için kullanılan bir yöntemdir. Bu yöntem, kullanıcının bir ürünü veya hizmeti satın almadan önce hangi pazarlama kanallarının daha etkili olduğunu belirlemeye çalışır.
Dijital pazarlama faaliyetlerinde genellikle birden fazla kanalı kullanılmaktadır. Organik arama, ücretli arama, sosyal medya, e-posta pazarlama, doğrudan trafiğe yönlendirme, içerik pazarlama, etkileşimli reklamlar bu kanallardan bazılarıdır. Bu bilgiden hareketle bir kullanıcının birden fazla kanal üzerinden etkileşimde bulunabileceği ve ardışık olarak farklı kanallar arasında geçiş yapabileceği söylenebilir. İlişkilendirme modelleri tam olarak bu noktada devreye girerek kullanıcının dönüşüm sürecinde hangi kanalların ne kadar etkili olduğunu anlamak için bu karmaşık etkileşimleri değerlendirmeye yardımcı olmaktadır.
Özetle, pazarlama bütçesinin etkili bir şekilde tahsis edilmesini sağlamak, pazarlama stratejilerini optimize etmek, kanal performansını anlamak, dönüşüm yolunu izlemek ve müşteri davranışını anlamak gibi konularda ilişkilendirme modelleri bizlere değerli içgörüler sağlayabilmektedir.
Dijital Pazarlama İlişkilendirme Modellerinin Önemi Nedir?
Attribution modellerinin dijital pazarlama dünyasında önemli olmasının sebebi, doğru bir şekilde kullanıldığında, pazarlamacılara pazarlama faaliyetlerinin etkisini ve getirisini anlamak için değerli bir analitik içgörü sağlamasıdır. Bu sayede pazarlama faaliyetlerinin etkisini anlamak, bütçeyi optimize etmek, strateji geliştirmek, müşteri içgörüleri elde etmek, performansı ölçmek, farklı kanalların etkisini anlamak ve veri destekli kararlar alınabilmektedir.
İlişkilendirme Modelleri
Google Analytics, kullanıcılarına farklı attribution modellerini sunmaktadır. Google Analytics tarafından bize sunulan ilişkilendirme modelleri şunlardır:
- Son Tıklama /Etkileşim (Last Interaction)
- Son Doğrudan Trafik (Last Non-Direct Click)
- Last Google Ads Click (Son Google Ads Tıklaması)
- İlk Tıklama Etkileşim (First Interaction)
- Lineer (Linear)
- Zaman Aralıklı (Time Decay)
- Pozisyon Temelli (Position-Based)
Last Interaction (Son Tıklama / Etkileşim)

Last Interaction (Son Tıklama / Etkileşim) attribution modeli, Google Analytics gibi analitik araçlarda sıkça kullanılan bir modeldir. Bu modelde, bir kullanıcının dönüşümü gerçekleştirdiği andaki son etkileşim veya tıklama, tüm dönüşüm değerini alır ve diğer tüm etkileşimler veya kanallar göz ardı edilir.
Last Interaction attribution (son etkileşim ilişkilendirmesi) modeli, son tıklamanın veya etkileşimin dönüşüm sürecindeki en önemli faktör olarak kabul edildiği bir modeldir. Bu modelde kullanıcının son etkileşim yaptığı kanal veya kampanya dönüşümü gerçekleştirdiğinde tüm değeri alır ve diğer etkileşimlerin veya kanalların katkısı göz ardı edilir. Örneğin, bir kullanıcının son etkileşimi organik arama sonuçlarından bir tıklama ise, organik aramanın tüm değerini alır ve kullanıcının daha önceki etkileşimleri veya kanalları dikkate alınmaz.
Last interaction attribution modeli basit ve doğrudan bir modeldir ve kullanıcının dönüşüm sürecinde son etkileşiminin en büyük etkisi olduğunu varsayar.
Ancak bu model, diğer etkileşimlerin veya kanalların dönüşüm sürecine olan etkisini göz ardı edebilir ve kullanıcının tüm yolculuğunu tam olarak anlama yolunda eksik bir perspektif sunabilir. Bu nedenle Last Interaction attribution modeli tek başına kullanıldığında, pazarlamacılar potansiyel olarak dönüşüm sürecindeki diğer etkileşimleri veya kanalları görmezden gelebilir ve bütçelerini yanlış yönlendirebilir. Dolayısıyla, farklı attribution modellerinin kullanılması ve dönüşüm sürecinin farklı perspektiflerden değerlendirilmesi önemli ve diğer modeller içinde geçerli bir durumdur.
Last Non-Direct Click (Doğrudan Olmayan Son Tıklama)

Last Non-Direct Click attribution modelinde kullanıcının dönüşümü gerçekleştirdiği andaki son etkileşim veya tıklama, doğrudan trafik dışındaki diğer kanallara atfedilir ve doğrudan trafik herhangi bir değer almaz.
Last Non-Direct Click attribution modeli, doğrudan trafik dışındaki diğer kanalların dönüşüm sürecine olan etkisini değerlendirmek isteyen pazarlamacılar için kullanışlıdır. Doğrudan trafik, kullanıcının sitenin URL'sini doğrudan tarayıcısına yazdığı veya bir yer imi veya geçmişten tıkladığı zamanlarda oluşur. Bu tür trafik, kullanıcının diğer kanallar üzerinden geldiği bir dönüşüm sürecinde genellikle son tıklamayı veya etkileşimi temsil etmez. Örneğin, bir kullanıcı organik arama sonuçlarından siteye gelir, ardından sosyal medya veya bir reklam kampanyası üzerinden siteye dönüş yapar ve sonunda doğrudan siteye dönerek bir dönüşüm gerçekleştirirse Last Non-Direct Click attribution modeli son doğrudan tıklamanın değil, son sosyal medya veya reklam kampanyası üzerinden gelen etkileşimin değerini alacaktır.
Last Non-Direct Click ilişkilendirme modeli, her ne kadar doğrudan trafik dışındaki kanalların dönüşümlerdeki katkısını daha iyi anlamak için kullanışlı olsa da, dönüşüm sürecindeki diğer etkileşimleri veya kanalları göz ardı edebileceği için tek başına kullanıldığında eksik bir perspektif sunabilir. Dolayısıyla, farklı attribution modellerinin kullanılması ve dönüşüm sürecinin farklı açılardan değerlendirilmesi önerilmektedir.
Last Google Ads Click (Son Google Ads Tıklaması)
Last Google Ads Click (Son Google Ads Tıklaması), Google Ads (eski adıyla Google AdWords) reklam kampanyalarında kullanılan bir ilişkilendirme modelidir. Bu modelde, kullanıcının dönüşümü gerçekleştirdiği andaki son etkileşim veya tıklama Google Ads üzerinden geldiği varsayılarak tüm değeri Google Ads'e atfeder.
Last Google Ads Click attribution modeli, Google Ads kampanyalarının dönüşümlere olan etkisini ölçmek isteyen pazarlamacılar için oldukça kullanışlı olabilmektedir.
Örneğin, bir kullanıcı bir Google Ads reklamı üzerinden siteye gelir, ardından organik arama sonuçlarından veya sosyal medya gibi başka bir kanaldan siteye dönüş yapar ve sonunda dönüşümü gerçekleştirirse, Last Google Ads Click attribution modeli, tüm değeri son Google Ads tıklamasına atfetmektedir.
Ancak, unutulmaması gereken husus, Last Google Ads Click attribution modelinin dönüşüm sürecindeki diğer kanalları ve etkileşimleri dikkate almadığıdır. Dolayısıyla, yalnızca son tıklamayı dikkate alarak diğer kanalların katkısını görmezden gelebilir ve büyük resmi size sunamayabilir.
First Interaction (İlk Tıklama/Etkileşim)

First Interaction (İlk Tıklama/Etkileşim) ilişkilendirme modeli, bir kullanıcının dönüşüm sürecindeki ilk etkileşimi veya tıklamasını vurgulayan bir modeldir. Bu modelde, kullanıcının dönüşüm yolculuğundaki ilk etkileşim veya tıklama, tüm değeri alır ve diğer kanallar dikkate alınmaz.
First Interaction attribution modeli, kullanıcıların ilk temasının ne kadar önemli olduğunu vurgulamak isteyen pazarlamacılar için kullanışlıdır. Özellikle farkındalık yaratma aşamasında, marka bilinirliğini artırmak için yapılan kampanyalarda veya potansiyel müşterilerin markayla ilk temasını sağlamak için kullanılan kanallarda bu model kullanılabilir.
Örneğin, bir kullanıcı bir reklam afişine tıklar, ardından siteye gelir ve sonunda bir dönüşüm gerçekleştirirse, First Interaction attribution modeli, tüm değeri ilk reklam tıklamasına atfeder.
Ancak, First Interaction attribution modeli, dönüşüm sürecindeki diğer etkileşimleri ve kanalları dikkate almadığından, kullanıcıların farklı kanallar üzerinden tekrar etkileşimde bulunduğunu veya dönüşüm gerçekleştirdiğini göz ardı edebilir. Dolayısıyla birden fazla attribution modelinin kullanılması burada da oldukça kıymetlidir.
Lineer (Linear)

Lineer (Linear) ilişkilendirme modeli dönüşüm sürecindeki tüm etkileşimleri ve tıklamaları eşit olarak değerlendiren bir modeldir. Bu modelde her bir etkileşim veya tıklama aynı değeri alır ve dönüşümün tüm kanallara eşit olarak atfedildiği kabul edilir.
Lineer attribution modeli, kullanıcıların dönüşüm yolculuğunda birden fazla kanala etkileşimde bulunduğunu ve dönüşüm sürecine katkıda bulunan her bir kanalın değerini vurgulamak isteyen pazarlamacılar için kullanışlıdır. Bu model kullanıcıların dönüşüm yolculuğundaki her etkileşimi veya tıklamayı değerlendirerek her kanalın payını adil bir şekilde belirlemeye çalışır.
Örneğin, bir kullanıcı bir reklam afişine tıklar, ardından organik aramada birkaç kez siteye gelir, daha sonra sosyal medya reklamına tıklar ve sonunda bir dönüşüm gerçekleştirirse, Lineer attribution modeli, her kanala eşit miktarda değer atfeder. Reklam afişine organik aramalara ve sosyal medya reklamına eşit değer verir.
Lineer attribution modeli, kullanıcıların dönüşüm süreçlerindeki tüm etkileşimleri dikkate alarak geniş bir perspektif sunar, ancak bazen bazı kanalların gerçek katkısını gizleyebilir.
Time Decay (Zamanla Değer Kaybı)

Time Decay (Zamanla Değer Kaybı) attribution modelling, dönüşüm sürecindeki etkileşimlerin zaman açısından değerlendirildiği bir modeldir. Bu modelde, kullanıcının dönüşüm yolculuğundaki son etkileşimlere daha fazla değer verilirken yolculuğun başındaki etkileşimlere daha az değer verilir.
Time Decay attribution modelinde kullanıcının dönüşüm yolculuğundaki her etkileşim veya tıklama zamanla ağırlıklandırılır. Yani, dönüşüme daha yakın etkileşimler veya tıklamalar daha fazla değer alırken dönüşüme daha uzak etkileşimler veya tıklamalar daha az değeri alır. Model, dönüşüm sürecinde zamanın önemini vurgulayarak kullanıcıların dönüşüm yolculuğundaki son adımları daha belirleyici olarak kabul eder. Bu modelde direkt kanallar ve e-posta kanalları daha fazla kredi alacaktır.
Position-Based (Pozisyon Temelli)

Position-Based (Pozisyon Temelli) ilişkilendirme modeli, dönüşüm yolculuğundaki farklı etkileşimlere belirli pozisyonlarda farklı değerler atayan bir modeldir. Dönüşüm yolculuğundaki başlangıç ve bitiş noktaları ile bu noktalar arasındaki etkileşimlere daha fazla değeri verilirken orta noktalara daha az değeri verilir.
Position-Based attribution modelinde, kullanıcının dönüşüm yolculuğundaki etkileşimler üç farklı pozisyona ayrılır: Başlangıç (first touch), orta (middle touch) ve bitiş (last touch). Başlangıç ve bitiş noktalarına daha yüksek değerler atfedilirken orta noktalara daha düşük değerler atanır. Bu modelde kullanıcının dönüşüm yolculuğunda başlangıç ve bitiş noktaları genellikle daha önemli kabul edilirken, orta noktaların da katkısının olduğu kabul edilir.
Örneğin, bir kullanıcı bir reklam afişine tıklar (başlangıç), sonra organik aramada birkaç kez siteye gelir (orta), ve sonunda bir Google Ads reklamına tıklar ve bir dönüşüm gerçekleştirir (bitiş). Position-Based attribution modeli, reklam afişine ve Google Ads reklamına daha yüksek değerler verirken, organik aramaları orta pozisyon olarak kabul eder ve daha az değeri erir.
Position-Based attribution modeli, dönüşüm yolculuğunda başlangıç ve bitiş noktalarının önemli olduğunu düşünen pazarlamacılar için kullanışlıdır. Ancak, model, dönüşüm yolculuğunun orta noktalarının potansiyel katkısını azaltabilir ve bazen karmaşık yolculuklarda gerçek katkıyı tam olarak yansıtmayabilir.
Universal Analytics Hangi İlişkilendirme Modelini Kullanır?
Universal Analytics, varsayılan olarak "Son Tıklama/Etkileşim" (Last Click/Interaction) ilişkilendirme modelini kullanmaktadır.
Bu, müşterinin dönüşüm sürecinde son olarak hangi kanala tıkladığına odaklanarak tüm değeri bu kanala atar ve diğer kanalların katkısını göz ardı eder. Yani, Universal Analytics'te dönüşümler varsayılan olarak son tıklama kanalına atanmaktadır.
Bir sonraki yazımızda Google Analytics 4 ve İlişkilendirme Modellerini inceleyeceğiz.
Ürün Analitiği & Veri Kategorisindeki Benzer Bloglarımız

Google Tag Manager Nedir? GTM Nasıl Kurulur?
Google Tag Manager(GTM) ile neler yapabileceğimizi, WordPress, Ticimax, T-Soft gibi panellerde GTM kodlarını nasıl ekleyeceğinizi bu yazımızda bulabilirsiniz.
Devamını oku
Çerezler (Cookies) Nedir? Ne işe Yarar?
Çerezler (Cookies) hakkındaki tüm bilinmezlikleri ve merak edilenleri sizler için bu yazımızda derledik.
Devamını oku
Adjust Nedir ve Ne İçin Kullanılır?
Adjust, mobil uygulama geliştiricilerine ve pazarlamacılara, kullanıcı davranışlarını izleme, analiz etme imkanı sunan bir tool'dur.
Devamını oku